14 research outputs found

    Quality assurance for Chinese herbal formulae: standardization of IBS-20, a 20-herb preparation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The employment of well characterized test samples prepared from authenticated, high quality medicinal plant materials is key to reproducible herbal research. The present study aims to demonstrate a quality assurance program covering the acquisition, botanical validation, chemical standardization and good manufacturing practices (GMP) production of IBS-20, a 20-herb Chinese herbal formula under study as a potential agent for the treatment of irritable bowel syndrome.</p> <p>Methods</p> <p>Purity and contaminant tests for the presence of toxic metals, pesticide residues, mycotoxins and microorganisms were performed. Qualitative chemical fingerprint analysis and quantitation of marker compounds of the herbs, as well as that of the IBS-20 formula was carried out with high-performance liquid chromatography (HPLC). Extraction and manufacture of the 20-herb formula were carried out under GMP. Chemical standardization was performed with liquid chromatography-mass spectrometry (LC-MS) analysis. Stability of the formula was monitored with HPLC in real time.</p> <p>Results</p> <p>Quality component herbs, purchased from a GMP supplier were botanically and chemically authenticated and quantitative HPLC profiles (fingerprints) of each component herb and of the composite formula were established. An aqueous extract of the mixture of the 20 herbs was prepared and formulated into IBS-20, which was chemically standardized by LC-MS, with 20 chemical compounds serving as reference markers. The stability of the formula was monitored and shown to be stable at room temperature.</p> <p>Conclusion</p> <p>A quality assurance program has been developed for the preparation of a standardized 20-herb formulation for use in the clinical studies for the treatment of irritable bowel syndrome (IBS). The procedures developed in the present study will serve as a protocol for other poly-herbal Chinese medicine studies.</p

    Carotid Body AT4 Receptor Expression and its Upregulation in Chronic Hypoxia

    Get PDF
    Hypoxia regulates the local expression of angiotensin-generating system in the rat carotid body and the me-tabolite angiotensin IV (Ang IV) may be involved in the modulation of carotid body function. We tested the hypothesis that Ang IV-binding angiotensin AT4 receptors play a role in the adaptive change of the carotid body in hypoxia. The expression and localization of Ang IV-binding sites and AT4 receptors in the rat carotid bodies were studied with histochemistry. Specific fluorescein-labeled Ang IV binding sites and positive staining of AT4 immunoreactivity were mainly found in lobules in the carotid body. Double-labeling study showed the AT4 receptor was localized in glomus cells containing tyrosine hydroxylase, suggesting the expression in the chemosensitive cells. Intriguingly, the Ang IV-binding and AT4 immunoreactivity were more intense in the carotid body of chronically hypoxic (CH) rats (breathing 10% oxygen for 4 weeks) than the normoxic (Nx) control. Also, the protein level of AT4 receptor was doubled in the CH comparing with the Nx group, supporting an upregulation of the expression in hypoxia. To examine if Ang IV induces intracellular Ca2+ response in the carotid body, cytosolic calcium ([Ca2+]i) was measured by spectrofluorimetry in fura-2-loaded glomus cells dissociated from CH and Nx carotid bodies. Exogenous Ang IV elevated [Ca2+]i in the glomus cells and the Ang IV response was significantly greater in the CH than the Nx group. Hence, hypoxia induces an upregulation of the expression of AT4 receptors in the glomus cells of the carotid body with an increase in the Ang IV-induced [Ca2+]i elevation. This may be an additional pathway enhancing the Ang II action for the activation of chemoreflex in the hypoxic response during chronic hypoxia

    Mechanisms of endogenous nitric oxide production and intracellular pathways in rat hippocampal CA1 calcium response to hypoxia and in-vitro ischemia

    No full text
    tocabstractpublished_or_final_versionPhysiologyMasterMaster of Philosoph

    An upregulation in the expression of vanilloid transient potential channels 2 enhances hypotonicity-induced cytosolic Ca²⁺ rise in human induced pluripotent stem cell model of Hutchinson-Gillford Progeria.

    Get PDF
    Hutchinson-Gillford Progeria Syndrome (HGPS) is a fatal genetic disorder characterized by premature aging in multiple organs including the skin, musculoskeletal and cardiovascular systems. It is believed that an increased mechanosensitivity of HGPS cells is a causative factor for vascular cell death and vascular diseases in HGPS patients. However, the exact mechanism is unknown. Transient receptor potential (TRP) channels are cationic channels that can act as cellular sensors for mechanical stimuli. The aim of this present study was to examine the expression and functional role of TRP channels in human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) from the patients with HGPS. The mRNA and protein expression of TRP channels in HGPS and control (IMR90) iPSC-ECs were examined by semi-quantitative RT-PCRs and immunoblots, respectively. Hypotonicity-induced cytosolic Ca²⁺ ([Ca²⁺](i)) rise in iPSC-ECs was measured by confocal microscopy. RT-PCRs and immunoblots showed higher expressional levels of TRPV2 in iPSC-ECs from HGPS patients than those from normal individuals. In functional studies, hypotonicity induced a transient [Ca²⁺](i) rise in iPSC-ECs from normal individuals but a sustained [Ca²⁺](i) elevation in iPSC-ECs from HGPS patients. A nonselective TRPV inhibitor, ruthenium red (RuR, 20 µM), and a specific TRPV2 channel inhibitor, tranilast (100 µM), abolished the sustained phase of hypotonicity-induced [Ca²⁺](i) rise in iPSC-ECs from HGPS patients, and also markedly attenuated the transient phase of the [Ca²⁺](i) rise in these cells. Importantly, a short 10 min hypotonicity treatment caused a substantial increase in caspase 8 activity in iPSC-ECs from HGPS patients but not in cells from normal individuals. Tranilast could also inhibit the hypotonicity-induced increase in caspase 8 activity. Taken together, our data suggest that an up-regulation in TRPV2 expression causes a sustained [Ca²⁺](i) elevation in HGPS-iPSC-ECs under hypotonicity, consequently resulting in apoptotic cell death. This mechanism may contribute to the pathogenesis of vascular diseases in HGPS patients

    Effect of hypotonicity and ATP on [Ca<sup>2+</sup>]<sub>i</sub> in IMR90-iPSC-ECs and HGPS-iPSC-ECs.

    No full text
    <p>(A and B), Representative traces (A) and data summary (B) showing the effect of hypotonicity (210 mOsm) on [Ca<sup>2+</sup>]<sub>i</sub> (fluorescence ratio F1/F0) in IMR90-iPSC-ECs and HGPS-iPSC-ECs bathed in isotonic solution. n  =  6-7 experiments. (C), Representative traces showing the effect of hypotonic solution (210 mOsm) on [Ca<sup>2+</sup>]<sub>i</sub> in cells bathed in Ca<sup>2+</sup>-free isotonic saline. n  =  8 experiments. D. Basal [Ca<sup>2+</sup>]<sub>i</sub> level in IMR90-iPSC-ECs and HGPS-iPSC-ECs as determined by Fura-2 dye. n  =  8. <sup>**</sup><i>p</i><0.01 unpaired <i>t</i>-test compared with the sustained [Ca<sup>2+</sup>]<sub>i</sub> level in IMR90-iPSC-EC group in B or compared with basal [Ca<sup>2+</sup>]<sub>i</sub> level in D. (E and F), Representative traces showing the effect of ATP (1 µM) on [Ca<sup>2+</sup>]<sub>i</sub> in cells bathed in normal physiological saline. Representative from 3 experiments.</p
    corecore